10 research outputs found

    Attention-Enabled Object Detection to Improve One-Stage Tracker

    Get PDF

    Temporal Cues from Socially Unacceptable Trajectories for Anomaly Detection

    Get PDF

    Sirenomelia-the mermaid syndrome: a rare invariably fatal congenital anomaly in a term unsupervised pregnancy

    Get PDF
    Sirenomelia is a rare congenital anomaly with an incidence of 0.8 to 1 case per 1,00,000 births. The prognosis is grim due to associated genitourinary and gastrointestinal anomalies. Antenatal registration in the first trimester and timely ultrasound go a long way in detection of the anamoly when termination can be still be offered and the mental agony of giving birth to a term neonate with a fatal congenital anomaly can be avoided.

    CL-MAE: Curriculum-Learned Masked Autoencoders

    Full text link
    Masked image modeling has been demonstrated as a powerful pretext task for generating robust representations that can be effectively generalized across multiple downstream tasks. Typically, this approach involves randomly masking patches (tokens) in input images, with the masking strategy remaining unchanged during training. In this paper, we propose a curriculum learning approach that updates the masking strategy to continually increase the complexity of the self-supervised reconstruction task. We conjecture that, by gradually increasing the task complexity, the model can learn more sophisticated and transferable representations. To facilitate this, we introduce a novel learnable masking module that possesses the capability to generate masks of different complexities, and integrate the proposed module into masked autoencoders (MAE). Our module is jointly trained with the MAE, while adjusting its behavior during training, transitioning from a partner to the MAE (optimizing the same reconstruction loss) to an adversary (optimizing the opposite loss), while passing through a neutral state. The transition between these behaviors is smooth, being regulated by a factor that is multiplied with the reconstruction loss of the masking module. The resulting training procedure generates an easy-to-hard curriculum. We train our Curriculum-Learned Masked Autoencoder (CL-MAE) on ImageNet and show that it exhibits superior representation learning capabilities compared to MAE. The empirical results on five downstream tasks confirm our conjecture, demonstrating that curriculum learning can be successfully used to self-supervise masked autoencoders

    Self-Supervised Predictive Convolutional Attentive Block for Anomaly Detection

    Get PDF
    Anomaly detection is commonly pursued as a one-class classification problem, where models can only learn from normal training samples, while being evaluated on both normal and abnormal test samples. Among the successful approaches for anomaly detection, a distinguished category of methods relies on predicting masked information (e.g. patches, future frames, etc.) and leveraging the reconstruction error with respect to the masked information as an abnormality score. Different from related methods, we propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block. The proposed self-supervised block is generic and can easily be incorporated into various state-of-the-art anomaly detection methods. Our block starts with a convolutional layer with dilated filters, where the center area of the receptive field is masked. The resulting activation maps are passed through a channel attention module. Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field. We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video, providing empirical evidence that shows considerable performance improvements on MVTec AD, Avenue, and ShanghaiTech. We release our code as open source at https://github.com/ristea/sspcab.Comment: Accepted at CVPR 2022. Paper + supplementary (14 pages, 9 figures

    Towards Limited Label Learning for Visual Surveillance

    Get PDF

    New Metric for Evaluation of Deep Neural Network Applied in Vision-Based Systems

    Get PDF
    Vision-based object detection plays a crucial role for the complete functionality of many engineering systems. Typically, detectors or classifiers are used to detect objects or to distinguish different targets. This contribution presents a new evaluation of CNN classifiers in image detection using a modified Probability of Detection reliability measure. The proposed method allows the evaluation of further image parameters affecting the classification results. The proposed evaluation method is implemented on images and comparisons made on parameters with the best detection capability. A typical certification standard (90/95) denoting a 90% probability of detection at 95% reliability level is adapted and successfully applied. Using the 90/95 standard, comparisons are made between different image parameters. A noise analysis procedure is introduced, permitting the trade-off between the detection rate, false alarms, and process parameters. The advantage of the novel approach is experimentally evaluated for vision-based classification results of CNN considering different image parameters. With this new POD evaluation, classifiers will become a trustworthy part of vision systems

    Self-supervised masked convolutional transformer block for anomaly detection

    No full text
    Anomaly detection has recently gained increasing attention in the field of computer vision, likely due to its broad set of applications ranging from product fault detection on industrial production lines and impending event detection in video surveillance to finding lesions in medical scans. Regardless of the domain, anomaly detection is typically framed as a one-class classification task, where the learning is conducted on normal examples only. An entire family of successful anomaly detection methods is based on learning to reconstruct masked normal inputs (e.g. patches, future frames, etc.) and exerting the magnitude of the reconstruction error as an indicator for the abnormality level. Unlike other reconstruction-based methods, we present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level. The proposed self-supervised block is extremely flexible, enabling information masking at any layer of a neural network and being compatible with a wide range of neural architectures. In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss. Furthermore, we show that our block is applicable to a wider variety of tasks, adding anomaly detection in medical images and thermal videos to the previously considered tasks based on RGB images and surveillance videos. We exhibit the generality and flexibility of SSMCTB by integrating it into multiple state-of-the-art neural models for anomaly detection, bringing forth empirical results that confirm considerable performance improvements on five benchmarks
    corecore